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Abstract 

The roof of an HCl fiber-reinforced plastic (FRP) chemical tank failed by                   

accident after it had been operated for less than its expected lifetime. A possible 

cause is the change in day and night temperature, which lead to the cyclic change 

in the concentration of HCl vapor in contact with roof part. To investigate this 

possibility, a detailed analysis on the durability of the material exposed to cyclic 

solution concentration is required. In this research, vinyl ester-glass fiber                     

composite specimens were exposed to 35 mass % and 0 mass% of HCl alternately 

at 40°C to replicate cyclic concentration exposure in both the vapor and liquid 

phases. The mass uptake and penetration depth of HCl as well as the strength loss 

of the material were investigated. Mass uptake and thickness change in vapor 

phase shows two times higher than liquid phase, at 3.5% and 6% respectively. 

This occurs due to differences in the concentration of solutions that diffuse to the 

specimen in the vapor phase and liquid phase. This phenomenon arises from               

variations in the concentration of solutions that diffuse to the specimen in both 

vapor and liquid phases. The diffusion process is facilitated by osmotic pressure, 

leading to material swelling and  contributing to their degradation. The result of 

flexural strength measurement of specimens indicated a decreasing trend as                

exposure time increased. The flexural strength decreases by up to 36% due to 

plasticization. The Cl and water content profile in specimens that obtained from 

elemental mapping of cross-sections using Energy-Dispersive X-ray Spectroscopy 

(EDS) are enhancing the study on how materials degrade, which may be a reason 

for damage to FRP tank roofs.  

 

Introduction 

Glass-fiber-reinforced plastics (GFRP) composites have gained a lot of interest as 

a material that can replace steel and aluminum in chemical plant applications for 
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storage tanks, pipes, and decks [1]. Due to its advantages, including corrosion resistance, high stiffness, 

and high strength, GFRP composites were adopted for chemical storage tanks that contained corrosive 

chemical solutions such hydrochloric acid (HCl) and sulfuric acid (H2SO4) [2]. GFRP composites for 

chemical equipment are typically made up of unsaturated polyester (UP) or vinyl ester (VE) matrix 

with glass fibers for reinforcing fiber [3,4]. VE is more water resistant than unsaturated polyester be-

cause its chemical structure contains fewer ester bonds, but it is more expensive [5]. Moreover, VE 

composites show a higher initial modulus and shear stress [6,7].  

VE composite degradation has been studied. Accelerated aging for up to 150 days and mechanical 

property testing in a controlled lab setting by changing temperatures and solution pH to determine glass 

fiber reinforced VE composite breakdown mechanism were reported [8], as well as an Arrhenius study 

that was performed to ascertain the rate of degradation acceleration observed at elevated temperature 

[9]. In addition to Arrhenius equation, Fick's equation may effectively predict the moisture diffusion 

behavior in glass fiber reinforced VE composite pipes. Furthermore, the diffusion coefficient and the 

proportion of absorbed moisture indicated an increase as the immersion temperature increased [10]. 

The performance of GFRP VE composites was also examined under water immersion and it was                

revealed that degradation was caused by plasticization, hydrolysis, matrix debonding, and matrix                

microcracking [11]. The investigation of degradation mechanisms of GFRP VE under water and acid 

conditions for temperature changes has also been conducted extensively [12-19]. The effect of acidic 

solutions on flexural property of matrix resin on temperature changes also has been investigated [20, 

21]. However, no study has been conducted to observe the degradation behavior resulting from changes 

in solution concentration.  

GFRP composites equipment is capable of very long-term use. However, there have been reports of 

severe accidents involving GFRP chemical tanks storing hydrochloric acid (HCl) which tend to fail at 

the roof part after less than 20 years of usage [22]. GFRP chemical tank roof failure raises the question 

of why the material's vapor phase performance decreased more than the wall-side directly exposed to 

liquid solution. However, most investigations on water or chemical solutions found that material in 

contact with liquid phase decreased performance more than material in contact with vapor phase. The 

different phenomenon may be induced by dynamic influences like daylight and nighttime temperature 

cycles. The temperature cycle causes condensation and evaporation, which changes the concentration 

of chemicals in contact with the vapor phase and can induce roof tank collapse. 

A study on polymeric material deterioration under cyclic solution concentration is needed to                        

understand this phenomenon. This paper investigates the degradation of GFRP VE composites exposed 

to cyclic solution concentration using rapid immersion and gravimetric analysis. The effect of exposure 

on mechanical properties is also investigated. Findings aim to clarify the degradation processes and 

support the development of more reliable GFRP materials with improved durability and lifetime                  

prediction in corrosive chemical environments. 

 

Materials and Methods 

Materials 

Material that is used in this study is GFRP that consists of glass fiber and matrix resin. Glass fiber           

reinforcement used in this study is chopped-strand mat E-glass type. Vinyl ester resin made from epoxy 

novolac is used for chemical storage tanks, pipes, ducting, fume extraction systems, and gas cleaning 

units because it can resist chemicals well even at high temperatures. These exhibit tensile elongation 
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and superior corrosion resistance, rendering them a potential material for manufacturing lining coatings 

with exceptional adherence to various polymers and traditional materials such as steel and concrete 

[23].  Vinyl ester resin DERAKENE MFE 711 (produced by ASHLAND) was used in this study.              

Methyl Ethyl Ketone Peroxide (MEKP) produced by PT. Kawaguchi Kimia Indonesia was used as a 

catalyst and curing agent. The 6% cobalt naphthenate (produced by PT. Justus Sakti Raya) was used as 

a  accelerant. Chopped-strand mat E-glass type fiber was used as the reinforcing fiber.  

Epoxy resin is also used in this study as a comparison. Epoxy is increasingly utilized due to its high 

specific stiffness and strength, corrosion resistance, and chemical compatibility with reinforcing fibers 

[24-25]. Bisphenol A-diglycidyl ether (DGEBA, R140) epoxy resin was used in this study. Poly

(oxypropylene) diamine JEFFAMINE D230 was used in this study as curing agent. 

Specimen Preparations 

Vinyl ester GFRP specimens were prepared by mixing the resin with curing agent and catalyst at a 

mass ratio of 100:1:0.5, respectively. After mixing and degassing process, the mixture was poured into 

the glass fiber on the top steel mold and cured at room temperature for 24 hours. The cured glass                 

fiber-VE plates were then removed from the mold. The specimen was precisely cut into small pieces at 

a dimension of 60 × 25 × 2 mm (length × width × thickness), as shown in Figure 1. To remove mold 

release and other material that could interfere with surface adsorption, all specimens were cleaned with 

water, then dried at room temperature for 1-2 days. 

Specimen of epoxy was prepared by mixing with the curing agent at a mass ratio of 100:30.6. After 

mixing and degassing process, it was poured into the glass fiber on pre-heated steel mold and cured 

using a hot press at a schedule of 60˚C for 6 hours for the first curing and 110 ˚C for 12 hours for the 

second curing. After finishing the curing procedure in a hot press, cooling to room temperature, and the 

cured epoxy plates were removed from the mold. 

Vinyl ester GFRP and epoxy GFRP specimens were prepared for both control and cyclic concentration 

exposure tests. The control specimens were fabricated using the same mixed design and manufacturing 

process as the test specimens but were not subjected to any cyclic exposure. Instead, the baseline              

material behavior under neutral conditions for comparison. 

Figure 1. Final specimens of glass-fiber 

VE composites  
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Cyclic Concentration Exposure Test 

The specimens were prepared for both vapor phase and liquid phase. Specimens were exposed to                

varying HCl concentrations at specified time intervals. Specimens are changed from higher HCl                

concentration to lower concentration or water alternately. In this study, for vinyl ester specimens, six 

pairs of HCl concentrations were  tested to see how they break down when switched between different 

levels: 35 mass% HCl  and water, 20 mass% HCl  and water, 10 mass% HCl and water. Epoxy                

specimens are only exposed to 35 mass% HCl and 0 mass% HCl (water). The temperature was                 

constantly kept at 40˚C. For HCl exposure, experiment was done inside an acid chamber. Meanwhile, 

for water exposure, the specimens in glass beakers filled with water were  placed in a 40˚C water bath.  

The specimen undergoes a full exposure cycle of 720 hours (30 days). A 5-day exposure in a solution is 

classified as half-cycles; thus, specimens initially exposed to HCl and subsequently to water represent 

one complete cycle, as illustrated in Figure 2. Schemes 2 and 3 were implemented to examine the                

variation in degradation resulting from exposure to varying concentrations of HCl cycles. The                  

experiment included HCl concentrations of 35 mass%, 20 mass%, and 10 mass%, as illustrated in           

Figure 3 and Figure 4. 

HCl 35% 

Water 

Figure 2. Scheme-1: HCl 35 mass% - water cyclic concentration  

HCl 20% 

Figure 3. Scheme-2: HCl 20 mass% - water cyclic concentration  
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Analysis Methods 

Gravimetric Analysis 

Gravimetric analysis was used to estimate the amount of penetrated acid solutions by measuring mass 

change and dimensional change. Each specimen was removed from the solution and patted dried by 

towel/tissue, and then the mass was measured on a digital balance with an accuracy of 0.0001 g. The 

change in mass of the specimens was calculated based on Eq. 1, where Mt is mass of specimen at time t 

and M0 is initial mass of specimen. 

   (1)  

Dimensional measurements were done using digital caliper with an accuracy of 1μm. The changes in 

thickness, length, and width were calculated based on Eq. (2-4). 

 

 

 

 

 

 

Where h is thickness of specimen at time t, h0 is initial thickness of specimen, lt is length of specimen at 

time t, l0 is initial length of specimen, wt is width of specimen at time t, and w0 is initial width of               

specimen. 

Mechanical Testing 

A three-point bending test was conducted using the Shimadzu Autograph AGS-1KNJ machine to               

assess the impact of acid penetration on the mechanical properties of the specimens, specifically to  

determine the flexural strength of the material following exposure to the solution. The test was                   

performed at a crosshead speed of 2 mm/min, following ASTM D790 standards [26]. 

Scanning Electron Microscopy (SEM)/ Energy Dispersive X-ray Spectroscopy (EDS) Observation 

Following the bending test, the cross-section of the specimen exposed to the vapor phase and liquid 

(3) 

(2) 

(4) 

HCl 10% 
Water 

Figure 4. Scheme-3: HCl 10 mass% - water cyclic concentration 
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phase was observed using JEOL JSM-6510LA SEM/EDS machine. SEM was used to examine the 

morphology of fracture surfaces. Meanwhile, EDS was used to determine the chemical composition of 

materials and to create element composition maps, which was used to determine the penetration depth 

of Cl in the specimen. 

Fourier-Transform Infrared (FTIR) Analysis 

FTIR observation is conducted to determine chemical reactions that occurred on cured VE while                

exposed to cyclic concentrations. FTIR spectra were obtained using an FTIR-ATR (Shimadzu                   

AIM-8000R) at a resolution of 4 cm-1 and a minimum of 60 scans averaged per spectrum. To get a  

representation of the pattern of the whole surface area, spectra from at least three points on a specimen 

were averaged.  

Size Exclusion Chromatography (SEC) Analysis 

SEC is a technique that separates molecules based on their sizes, allowing for the determination of the 

molecular weight distribution of the organic soluble components of a polymer [27-28]. Through SEC 

analysis, it can be determined whether the resin is leaching out in the HCl solution. The sample                 

preparation for SEC analysis is as shown in Figure 5. After exposing GFRP to HCl solution for 30 

days, the post-exposure HCl solution was collected for analysis. The HCl solution was subjected to 

liquid–liquid extraction using ethyl acetate. Following extraction, the mixture is separated into an               

organic phase (resin dissolved in ethyl acetate) and an aqueous phase (HCl and ethyl acetate). To                 

neutralize any residual acidity, the organic phase was treated with a saturated aqueous solution of                

sodium bicarbonate (NaHCO3), and the resulting aqueous layer was removed. The purified organic 

phase was then concentrated by evaporation under reduced pressure to remove ethyl acetate, yielding 

an organic solid. This solid was subsequently dissolved in tetrahydrofuran (THF) at a concentration of 

100 mg per 10 ml. Finally, a 0.4 ml (400 µl) aliquot of the THF solution was injected into a SEC              

column for molecular weight distribution analysis. 

Figure 5. Schematic process diagram of extraction and 

SEC sample preparation from post-exposure HCl                  

Solution  
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Results and Discussion 

Mass Uptake during Exposure to Cyclic Concentration 

The mass uptake was analyzed using gravimetric analysis following exposure of the specimens to             

cyclic concentration. The result of mass uptake measurement after being exposed to cyclic                         

concentration of 35 mass% HCl and water for 720 hours are shown in Figure 6. In Cycle 0.5 (0-120 h) 

penetration occurred on the surface of the GFRP composite when first exposed to 35 mass% HCl.            

Between 120 and 240 hours, the specimens are exposed to water, during which water absorption            

primarily occurs due to osmotic pressure. This pressure drives water from the surrounding environment 

into the polymer matrix, leading to an increase in mass uptake observed during cycle 1 (120–240 h). 

Under liquid-phase conditions, HCl is initially concentrated at the surface of the polymer after initially 

exposed to a 35 mass% HCl. Additionally, a relatively large volume of water is present, leading to a 

high concentration difference of HCl between the polymer surface and surrounding solution. This             

promotes the leaching of HCl from the polymer into the surrounding solution. In contrast, under                

vapor-phase conditions, the amount of water available is significantly lower. Water condenses on the 

polymer surface, forming only a thin layer. This limited water availability slows the diffusion of HCl 

out from the polymer. Moreover, the thin condensed water layer may become saturated with HCl,              

further hindering its release into the vapor phase. As a result of these mechanisms, the polymer in the 

vapor-phase condition exhibits a greater mass uptake than in the liquid-phase condition, despite the 

lower water content. 

During Cycle 1.5 (240–360 h), both the liquid and vapor phase specimens are re-exposed to the HCl 

solution, allowing them to encounter the acid once again. By this point, a significant amount of water 

has already been absorbed into the polymer. When the specimens are placed back into a                            

high-concentration HCl environment, the external solution draws water out of the polymer due to             

osmotic effects [29-32]. As a result, the mass of specimens decreases during this cycle. When exposed 

Figure 6. Mass uptake of specimens exposed to 35 mass% HCl-water cyclic concentration 

at 40°C 
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to vapor, a significant amount of water is trapped inside the polymer. This trapped water may help the 

polymer return to its previous level of mass uptake. However, since the duration of Cycle 1.5 (240–360 

h) is relatively short, the mass uptake in the vapor phase remains slightly higher than in the liquid phase 

during this period. This suggests that the same mechanisms observed earlier such as limited leaching 

and high internal water content may continue to drive mass uptake in the vapor phase. Cycle 2 and 3 

follow the same mechanism observed in Cycle 1, where the specimens absorb water during exposure, 

primarily driven by osmotic pressure. Similarly, Cycle 2.5 (480–600 h) exhibits the same behavior as 

Cycle 1.5 (240–360 h), during which the specimens are re-exposed to the HCl solution, resulting in 

water being drawn out of the polymer and leading to a decrease in mass uptake. 

Figure 7(a) and Figure 7(b) present a comparison of mass uptake for specimens exposed to cyclic                   

concentrations of 35 mass% HCl-water, 20 mass% HCl-water, and 10 mass% HCl-water. The                 

Figure 7 (a). Mass uptake of specimens exposed to 35 mass%               

HCl-water, 20 mass% HCl-water, 10 mass% HCl-water cyclic             

concentration at 40°C in vapor phase  

(a) 

Figure 7 (b). Mass uptake of specimens exposed to 35 mass%                      

HCl-water, 20 mass% HCl-water, 10 mass% HCl-water cyclic                

concentration at 40°C in liquid phase  

(b) 
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specimen exposed to 35 mass% HCl-water shows a significantly higher mass uptake compared to those 

exposed to 10 mass% HCl-water and 20 mass% HCl-water. One possible reason for this difference is 

that 10 mass% HCl-water and 20 mass% HCl-water are far from the maximum achievable HCl                

concentration under normal atmospheric pressure. This lower concentration may result in weaker             

osmotic driving forces and less aggressive diffusion behavior, which could influence the overall              

absorption mechanism. 

Thickness Change during Exposure to Cyclic Concentration 

In addition to determining the mass uptake, dimensional change was also assessed. Figure 8 illustrates 

the changes in thickness, length, and width for both the vapor phase and liquid phase. The results                  

indicate that the increase in thickness is significantly larger than the changes in length and width. This 

finding suggests that there is minimal change in the size of the specimen, but there may be surface                     

penetration. In GFRP specimens, dimensional changes during environmental exposure are often                 

anisotropic (vary depending on the direction) due to the material’s internal structure [33-34]. GFRP is a 

composite made of stiff, aligned glass fibers embedded in a polymer matrix. The glass fibers in the 

specimen used for this research are oriented in the plane of the specimen, primarily along the length 

and width directions, which provides high stiffness and dimensional stability in those directions [35-36] 

As a result, any swelling or dimensional change due to mass uptake is largely constrained along the 

length and width because the fibers restrict expansion. In contrast, the thickness direction contains     

(a) 

(b) 

Figure 8. Dimensional change of specimens exposed to 35 mass% 

HCl-water cyclic concentration at 40°C in (a) vapor phase, and (b) 

liquid phase  
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fewer or no reinforcing fibers, making it less constrained. Therefore, when water is absorbed into the 

polymer matrix, the matrix can swell more freely in the thickness direction, leading to measurable           

dimensional change in thickness, while the length and width remain relatively unchanged. 

Figure 8 shows that the thickness change in vapor phase is bigger than liquid phase. This result                

suggests that similar mechanisms are at play in both conditions, and the changes are proportional to the 

mass uptake observed. The phenomenon of osmotic pressure induces the swelling of materials and                     

subsequently contributes to their degradation. 

Mechanical Properties  

The mechanical properties of the vapor phase and liquid phase specimens were analyzed using a               

three-point bending test. The flexural strength of the specimens exposed to cyclic concentration                  

conditions can be seen in Figure 9. Acid penetration results in decreased mechanical properties. As 

shown in Sections 3.1 and 3.2, HCl and water penetrate the network and cause significant swelling, 

leading to plasticization. Moreover, this plasticization/swelling effect was the primary reason for the 

decrease in flexural strength [37-38]. If swelling occurs, very short molecular weight chemicals                    

(a) 

(b) 

Figure 9. Flexural strength of specimens exposed to various HCl cyclic concentration 

in (a) vapor phase and (b) liquid phase at 40°C  
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inserted in the matrix which resulted in reduced polymer-polymer interaction and increased                          

plasticization [39] Swelling does not result in direct interaction, but 3D construction will be extended, 

which resulted in plasticization.  

The flexural strength of the vapor phase and liquid phase specimens show different trends. When               

comparing the flexural strength in the vapor phase, there is a similarity in the results between exposure 

to 10 mass% HCl-water and 20 mass% HCl-water. However, there is a significant difference in flexural 

strength after exposure to 35 mass% HCl-water. Meanwhile, in the liquid phase, the flexural strength 

values for all exposure conditions showed similar results.  

EDS Observation 

Following the bending test, the specimen cross-section surface in the vapor phase and liquid phase was 

observed and analyzed. The penetration depth of Cl from mapping of cross-section surface is                   

investigated for each vapor phase and liquid phase exposure at initial condition and after 5 days, 10 

days, 15 days, and 20 days of 35 mass% HCl-water cyclic exposure.  

The progression of Cl penetration with immersion time was confirmed. Figure 10 shows that Cl                      

penetration in VE occurs at a very slow rate compared to epoxy (EP) [40-43]. There is no significant 

difference in the depth of Cl penetration between exposure to the vapor and liquid phases. This small 

difference is attributed to the mechanisms of Cl infiltration. In the vapor phase, Cl enters the material 

either as a gas or as condensed Cl, leading to a lower overall concentration compared to the direct              

dissolution and transport in the liquid phase. Additionally, the Cl distribution appears concentrated near 

the surface, deviating from the expected behavior based on simple Fick’s law diffusion [44-45]. This 

deviation is likely due to the effects of cyclic concentration processes near the surface. While the                 

distribution pattern of Cl does not vary significantly between phases, the key distinction lies in water 

uptake behavior. The amount of water absorbed differs greatly between the vapor and liquid                   

environments, which is the primary reason for the observed discrepancy in Cl accumulation.  

Figure 10. Cl penetration from EDS mapping for specimens exposed for 5, 10, 15, and 20 days of 35 mass% 

HCl-water cyclic concentration in vapor phase and liquid phase  
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FTIR Analysis  

As depicted in Figure 11, the progression of hydrolysis was confirmed at a preliminary level through    

infrared spectroscopy, wherein a decrease in the ester band (more specifically a combination of C–O 

stretch and O–H bend) is observed [46]. The peaks at 1605 cm−1, 1509 cm−1, and 1452 cm−1 (benzene 

ring) and at 1240 cm−1 and 1041 cm−1 (ether bond) were still present in the products, showing that the 

carbon framework remained intact during the degradation process. From FTIR results, it can be                   

concluded that hydrolysis has occurred on the material under HCl cyclic concentration exposure.  

SEC Analysis 

Components eluted into the hydrochloric acid solution were analyzed to determine whether any resin 

had leached from the specimen into the solution. The peak observed at a shorter retention time                    

corresponds to high-molecular-weight VE species. In size exclusion chromatography (SEC), larger 

(a) 

(b) 

Figure 11. FTIR spectra for (a) vapor phase and (b) liquid phase 

after 30 days exposure in 35 mass% HCl-water cyclic concentration 

at 40ºC 
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molecules elute earlier because they are unable to penetrate the porous structure of the column’s                

packing material. Consequently, these macromolecules are excluded and travel more rapidly through 

the column, whereas lower molecular weight species enter the pores and elute later [47-51]. 

As shown in Figure 12, the first peak at approximately 18 minutes corresponds to low-molecular-

weight components such as styrene, methacrylic acid, and catalyst residues. SEC analysis of pure                

styrene confirmed a single peak at this retention time, supporting this assignment. The second peak, 

observed at around 35 minutes, is likely associated with the THF solvent itself. Based on these results, 

estimating the molecular weight of the residual VE resin under cyclic acid exposure is difficult.               

However, the presence of low-molecular-weight degradation products indicates chain scission at the 

ends of the vinyl ester backbone, suggesting resin leaching and mass loss from the composite.  

 Comparison of Degradation Behavior between GFRP VE vs GFRP Amine cured Epoxy (EP) 

The degradation behavior of different resin material in GFRP can be investigated by comparing the 

Figure 12. SEC result of chemical species dissolved in HCl  

Figure 13. Mass uptake of GFRP EP vs GFRP VE composites exposed in 35 mass% HCl-water cyclic 

concentration  
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evaluation results. In previous research, degradation behavior of GFRP with amine-cured EP was also 

investigated using gravimetric analysis [52]. Figure 13  shows how much mass EP and VE resins gain 

when exposed to HCl and water in both vapor and liquid phase over time. In the case of EP resin, it 

shows a  much bigger  mass change than VE resin, particularly in the vapor phase.  

In contrast, VE resin shows a relatively stable and gradual increase in mass uptake, especially after 

transitioning to the water phase. This suggests greater penetration of water or HCl into the resin, but 

with minimal leaching, as evidenced by the consistent upward trend in mass over time. After switching 

from HCl to water (around 360 hours), EP resin in both vapor and especially liquid phases shows a 

clearderease, indicating degradation and material loss. The saturation behavior and negative mass              

uptake values further support this  indicating extensive leaching in the water phase. In the case of VE 

resin, the mass uptake remains positive throughout the experiment, suggesting less structural                          

degradation. Overall, EP resin is more susceptible to degradation and leaching, while VE resin shows 

better retention and controlled absorption, indicating higher durability under alternating chemical         

exposures. 

Figure 14 shows the thickness change of different GFRP (EP and VE) over time under HCl-water             

cyclic concentration in both vapor and liquid phases. In the case of EP, exposure in liquid phase (0-240 

hours) leads to a significant increase in thickness, going up by more than 20%. In contrast, the vapor 

phase (240-480 hours) shows a smaller increase in thickness of 10-15%, meaning there is less swelling 

or absorption in vapor conditions. 

Meanwhile, in the VE case, exposure in vapor phase for 240 to 480 hours leads to a small thickness 

increase of about 5%, showing it is more resistant than the epoxy resin. In the liquid phase (480-720 

hours), the VE shows a minimal thickness change, generally less than 5%, suggesting a stronger                 

Figure 14. Thickness change of GFRP EP vs GFRP VE exposed in 35 mass% HCl-water cyclic  

concentration  
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resistance to liquid absorption compared to epoxy resin.  

 

Conclusions 

This research studied the degradation behavior of GFRP VE specimens under HCl cyclic concentration 

to acknowledge the cause of the roof tank failure which affected by the factor of cyclic concentration 

on vapor phase and liquid phase. Based on the experimental results, the following conclusions can be 

drawn: 

1. The effect of dynamic cyclic concentration change was confirmed.  

2. From mass uptake results, penetration occurred on the surface of VE GFRP specimens when first               

exposed 35 mass% in half-cycles. When specimen is placed in water after HCl exposure, a new                  

concentration gradient is established. Concentration of HCl inside the GFRP is higher than that of 

the external water. This difference in concentration creates osmotic pressure that results in the 

movement of water from low HCl concentration region to high HCl concentration region, leading 

to an increase in mass of the specimen. In cycle 1.5 (240-360 h), a large amount of water that has 

penetrated is released due to the osmotic pressure of the concentrated hydrochloric acid outside, 

resulting in a decrease in mass. Some of the water may have moved to a deeper part of the sample 

that has not yet contained water. At the same time, the solutes from the concentrated                          

hydrochloric acid will enter the sample. This conclusion strengthened by acid content profile in 

cross-sectional chemical mapping from EDS result.  

3. Thickness change results confirmed that swelling has occurred in the VE GFRP specimens. The               

thickness change in the vapor phase is around 6%, which is greater than the liquid phase's change 

of 3%. The thickness changes seen in the vapor and liquid phases show that the same processes are             

happening in both cases, and these changes relate to the amount of mass absorbed.  

4. Material swelling leads to plasticization, and this effect was the primary reason for the decreases in 

flexural strength. The phenomena of swelling and plasticization subsequently contribute to                      

material degradation. 

5. EDS results show an acid content profile from specimen’s cross-sectional mapping for each cycle. 

The difference in HCl distribution in the specimen can be seen between the vapor phase and the 

liquid phase when exposed to 35 mass% HCl and water. Concentration of the Cl distribution is 

observed near the surface, which deviates from the simple Fick’s law diffusion prediction. The 

observed variance is most likely caused by cyclic concentration processes that occur near the               

surface. The distribution pattern of Cl remains generally similar over phases, however the behavior 

of water uptake differs most significantly. The volume of water absorbed varies significantly             

between vapor and liquid environments, which is the main factor contributing to the highlighted 

difference in Cl accumulation. 

6. FTIR result indicates that a chemical reaction occurred following cyclic exposure. Hydrolysis is                 

preliminarily confirmed by a reduction in the ester band.  

7. The results from mass uptake in cycle 1.5 (240-360 h) and cycle 2.5 (480-600 h) indicate a                

decrease in mass, attributed to the leaching of material components. Consequently, SEC was               

performed to observe whether the resin is leaching out in the HCl solution. The results of first peak 

and second peak indicate the presence of low-molecular-weight degradation products, which                 

suggests chain scission at the ends of the vinyl ester backbone. This observation implies resin 

http://www.openaccesspub.org/


                           Vol 2 Issue 2  Pg. no.  38 

 

©2025 Tania Natasha Dharmakusumah, et al. This is an open access article distributed under the 

terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, 

and build upon your work non-commercially. 

Journal of Current Scientific Research 

 

leaching and mass loss from the composite. 

8. Epoxy-amine cured matrix fiber reinforced plastics were also studied in comparison to Vinyl Ester  

Matrix Fiber Reinforced Plastics to determine degradation behavior differences. The mass change 

in epoxy is significantly more than that of vinyl ester at half-cycle exposure, with epoxy exhibiting 

an 8% change compared to 1% for vinyl ester, resulting in a difference nearly eightfold. Bisphenol

-A type of epoxy comprises hydroxyl groups that can attract and retain water. EP results indicate 

higher diffusion of acid and water. The presence of acid results in an increase in mass uptake and 

swelling. Also, the negative mass uptake value in the GFRP EP case showed that chemical                  

reactions, such as breaking of chains, will happen, causing some polymer parts to wash away and 

the overall mass to decrease. This indicates that EP resin shows an increased vulnerability to               

degradation and leaching. Meanwhile, VE resin has better chemical resistance; VE does not react 

with acid, but acid will penetrate slowly to the material. VE leads to less water/acid uptake and 

smaller thickness changes. 
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